

The Water Cycle

Zooplankton Monitoring

Enlarged Daphnia pulicaria

Streams

- •Flow
- •Temperature
- •Oxygen
- •Nutrients
- Sediments

Generally small in area and/or shallow

2. Recharge Lakes

Likely source of water to regional surficial aquifer

3. Flow-Through Lakes

"surface expression" of water table

4. Discharge Lakes

Net inflow of groundwater

How Groundwater Contributes Flow to a Stream: Role of Geology

Wetlands: How to recognize them

Wetland Criteria

- Hydric <u>soils</u> soils showing evidence of prolonged saturation
- Hydrophytic <u>vegetation</u> plants adapted to wet conditions
- Saturation or inundation (evidence of water) long enough to affect soils and vegetation

Type 1 – flooded temporarily

Type 4 – deep marsh

Type 2 – saturated soil much of year

Type 6 – Shrub swamp

Environmental Impacts of Conventional Urban Development

INTENSITY OF LAND USE

Typical Residential **Property**

+ "Green Concrete" Compacted Lawn

8,390 s.f. "impervious" x 1" rain (if infiltrates first 1/4" of rain)

= 3,880 gallons of runoff

Potential Runoff:

with 23" yearly

5,422 gallons

In a 1" rainfall

Potential Runoff:

precipitation

124,706 gallons/yr

1,500 s.f. house (& patio) x 1" rain = 925 gallons of runoff

1,000 s.f. driveway x 1" ra

= 617 gallons of runoff

Stormdrain

Stream Impacts of Impervious

What is a Total Maximum Daily Load (TMDL)?

A Formula and Process, which will tell you...

the maximum amount of a specific pollutant that can be discharged to a waterbody and still meet water quality

standards

One Problem: Conventional Site Design

Engineered Drainage

What are BMPs?

- Best Management Practices
 - -Ways in which we try to minimize our impact on the environment.

Low Impact Development

LID PRINCIPLES

Use existing natural systems as the integrating framework for site planning

- Land use planning and watershed planning
- Identify environmentally sensitive resources: wetlands, mature trees, slopes, drainageways, permeable soils, waterway buffers
- Assess existing hydrology
- Define a development envelope

Focus on prevention

- Minimize clearing and grading
- Cluster buildings and reduce building footprints
- Reduce road widths, use shared driveways, reduce parking area
- Align roads to minimize impact
- Use green rooftops
- Use permeable paving

Native Gardens Raingardens Native Shoreline Stabilization

Roots of Native Prairie Plants

What are Rain Gardens?

- Shallow vegetated areas that are usually dry
- Use deep-rooted vegetation
- Designed to filter polluted runoff and enhance groundwater recharge
- Provides wildlife habitat
- Landscape amenity

Why Raingardens?

Raingardens

(Capturing Rainwater / Stormwater)

Just like a regular planting, but able to absorb rainwater and breakdown pollutants

Where would you put a raingarden? 280 sq ft 380 sq ft Total Rooftop Drainage Area = 660 sq ft 660 x 10% = 66 sq ft Raingarden Area 66 sq.ft. = 6' x 11' Raingarden

Como Lake Parking Lot Raingarden

Existing mown grass swale in parking lot area drainage area

Project Goal:

-filter & infiltrate parking lot runoff

-educationopportunity forlocal residents /park users

What's Happened to Shoreland Plants?

What's Happened to Songbirds?

Source: Wisconsin DNR

What's Happened to Frogs?

Permeable Paving

Runoff reduction – up to 70-80%

- Grass pavers
- Paving stones
- Porous asphalt
- Pervious concrete

Aesthetics are important culturally

Acronyms

- TMDL: total maximum daily load
- MS4: municipal separate storm sewer system
- WLA: wasteload allocation
- LA: load allocation
- NPDES: National Pollutant Discharge Elimination System
- SWPPP: stormwater pollution prevention plan (construction) or stormwater pollution prevention program (municipal)
- BMP: best management practice